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In the first part of the paper it is shown that the impulse and virial theorems of 
inviscid incompressible fluid mechanics are special cases of a more general theorem 
from which an infinity of relations can be obtained. Depending on the problem, only 
a finite number of these relations may be independent. An application of these results 
is in the approximate study of the hydrodynamic interaction of bodies. As an 
example, in the second part of the paper, the case of two freely translating, 
nonlinearly pulsating bubbles is considered. It is found that in certain parameter 
ranges the force between the bubbles has a sign opposite to what would be expected 
on the basis of the linear theory of Bjerknes forces. 

1. Introduction 
Consider N closed material surfaces S, in a finite or infinite region SZ occupied by 

a perfect fluid in irrotational motion. Then Blake & Cerone (1982) proved the 
following relation : 

( 1 . 1 )  

In this relation q5 is the velocity potential, u = Vq5 is the velocity field, and n is the 
unit normal directed away from the fluid. By B we denote all the material surfaces 
bounding the region SZ other than S,, S,, . . . and the surface at  infinity. In the absence 
of any boundary a t  a finite distance from the bodies, the right-hand side vanishes and 
this relation proves the time independence of the sum of integrals in the left-hand 
side, which is identified with the impulse of the fluid (or, more precisely, with the 
impulse divided by the density). Benjamin & Ellis (1966) and Blake and co-workers 
(Blake 1983, 1988; Blake & Cerone 1982; Blake & Gibson 1981, 1987; Blake, Taib & 
Doherty 1986) have given a number of examples of the application of this theorem 
in bubble dynamics. 

Another integral theorem, only valid for an infinite region 8, has been proven by 
Benjamin (1987) and, in a different way, by Longuet-Higgins (1989). In the previous 
notation this theorem may be written 

d N  
-C. dt+l I si q5ndSi = ~ B [ ~ u . u n - ( n - u ) u ] d s ' , .  

N 

fi 5 p J - $x - n a, = - 5 ~ ,  + 
dti-1 st i-1 s,, ( p - p a )  (x - n) mi, (1.2) 

where E ,  is the kinetic energy of the fluid, p is the pressure, p is the density and p ,  
the ambient pressure. The sum of integrals in the left-hand side is the virial of the 
motion. 

In the present paper we shall generalize these results in two directions. First, we 
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shall show that they are special cases of a much more general theorem. Secondly, we 
shall derive corresponding relations valid for each particular surface S,, or portion 
thereof, rather than for the sums appearing in the left-hand sides of (1.1) and (1.2). 
In this sense our general theorem is ‘local’, while (1 .1)  and (1.2) are ‘global’. 

We believe that our results are interesting in two complementary ways. First, they 
can lead to the discovery of conservation properties and thus offer an insight into the 
structure of the theory. Secondly, they can be useful in setting up systematic 
approximation schemes for specific problems, as will be shown in $5 for the case of 
two interacting bubbles. In view of the remarkable accuracy with which Blake and 
co-workers have been able to estimate the direction of the jet of a collapsing bubble 
by means of the impulse theorem ( l , l ) ,  it may be expected that such an approach 
could be fruitful. Other examples of the usefulness of integral theorems have recently 
been given by Benjamin (1989) and Longuet-Higgins (1989) who have demonstrated 
their use in the context of slightly non-spherical oscillating bubbles. 

2. Local theorems 
The most general form of our ‘local’ integral theorem is rather complex. For this 

reason, in order to illustrate the method of derivation, i t  is useful to consider some 
simple special cases first. 

For an inviscid flow and in the absence of body forces the Bernoulli integral can 
be written as 

(2.1) --- d# ;u.u+pr = 0, 
dt 

where d/dt denotes the material derivative and 

pr=-, P - P m  
P 

with p the liquid density and p ,  an integration constant that can depend on time. 
For a material surface S and any scalar, vector, or tensor quantity f we have 

6s = -(n-V)(u.n) (2.3) 
I d  
6s dt 

as directly follows from 
-- 

(see e.g. h i s  1962 or Kemmer 1977 for a detailed derivation, or Prosperetti 1979 for 
a simpler approach). Upon integration of (2.1) over such a material surface S and use 
of this relation we obtain 

# d S  = - (2.4) 

This is a special case of the genera1 theorem (2.8) to be proven below. We note 
expressly that this relation holds for any portion of a material surface in contact with 
a perfect fluid in irrotational motion. 

A second special case is obtained if, before integration over S ,  (2.1) is multiplied 
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by a - n ,  where a is an arbitrary vector field. Upon integration over S and use of (2.3) 
the following equation is obtained : 

(u-U) (a.n)dS- p'(a.n)dS. (2.5) 

This equation can be put into a more useful form by expressing dnldt in terms of the 
velocity potential $. To this end we make use of the following relation : 

(2.6) 
dn -- - n(n.V)(u.n)-(n.V)u, 
dt 

which is derived in the Appendix, to find 

d da %Is q5 (a a n )  ds = Is q5 [ n - &- a - (n. V) u] dS 

(u-u) (~*n)dS- p'(a*n)dS. (2.7) 

It may be noted that, with a = n and use of (2.6), this relation reduces to the previous 
one, (2.4). 

Generalizations of these results are now straightforward. Let qj,.,k be a component 
of a tensorial quantity of any order. We multiply the Bernoulli integral by qj,..knz 
and use (2.6) to find 

Here we indicate differentiation with respect to the space coordinates by the 
standard comma notation of tensor calculus. In  particular, selecting a = n, and again 
using (2.6), we find the following generalization of (2.4) : 

where summation over repeated indices is implied. This result can of course also be 
proven directly following the steps that leads to (2.4). 

The theorem (2.8) can be further generalized to quantities of the type qj..,kl,,.m 
n, . . . no. The derivation of this relation is straightforward since it only involves the 
use of the derivative of a product. However, the final result is somewhat complicated 
and therefore it will not be given explicitly. 

I n  view of the infinity of relations that can be derived by the method described, 
the yuestion arises of how many of them are actually independent. Although a 
complete answer to this question cannot be given a t  this time, it appears plausible 
that in principle one should be able to  generate as many independent relations as the 
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degrees of freedom of the system considered. Some further comments on this point 
can be found at  the beginning of $5.  I n  this connection it should be noted that the 
present situation is different from that studied by Benjamin & Olver (1982) who 
found eight independent conserved integral quantities for two-dimensional surface 
waves. Indeed, in our case, we are not dealing in general with conserved quantities 
since the right-hand sides of equations such as (2.8) and (2.9) do not necessarily 
vanish. 

3. A global theorem 
The previous results apply to any portion S of a material surface bounding the 

region occupied by the fluid. In  the special case in which S is the entire boundary, 
one can put the previous results in an alternative ‘global’ form. Its  interest lies in the 
f&ct that it will enable us to recover the impulse and virial theorems quoted in 8 1. 
Again, in the interest of simplicity, we shall present explicit derivations only for the 
theorem of (2.7). The general case can be recovered by tracing the same steps starting 
from (2.9). 

Given the complexity of the terms i t  is best to use index notation. In this notation 
(2.7) is 

d 
- Js $ai ni dS = Is $ni [ 2 - aj $, dS 
dt 

After a straightforward application of the divergence theorem and some sim- 
plifications we obtain 

where V denotes the volume occupied by the fluid. Some simplification can be 
obtained by recognizing that 

which, upon substitution into (3.2) gives, in vector notation, 

It may be noted that, provided u.ulal = ~ ( l x l - ~ )  a t  infinity, the surface integrals in 
this relation need only be extended to the finite portions of the boundary S. Indeed, 
let S,  denote a material surface at infinity. Then, using (2.2), the contribution of S ,  
to this equation is 
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or, by use of Bernoulli’s theorem (2.1), 

[tu . u - $(n . V) (us n)] a .  n dS. 
Jsm 

The order of magnitude of the two integrands a t  infinity is the same, and the 
requirement that the integral vanishes as 1x1 + co proves the previous statement. 

The result (3.4) can be checked with a simpler, alternative derivation. We start 
with the momentum equation for an inviscid flow, 

du 
--+Wpl dt = 0. (3.5) 

We now take the scalar product of this relation with an arbitrary vector field 
a(x,t) and use u = W$ to obtain the scalar equation 

It is possible to convert this equation into a form suitable for application of the 
divergence theorem by a straightforward manipulation of the first term, 

d d 4  d da 
- (V - $a) - -V - a  - # - (V - a) - -- V$ + a .  Vp’ = 0. 
dt dt dt dt (3.7) 

Upon elimination of d$/dt by use of the Bernoulli integral (2.1) we find 

da d 
dt dt V $ - ( b - ( V . a ) + V . ( p ’ a )  dt = 0. (3.8) 
d 
- (V. #a) - tu * uv . a --. 

In contrast to the previous derivations, we now consider a liquid volume V(t) 
bounded by surfaces, collectively denoted by Z(t), not necessarily material. For any 
such volume we have the transport theorem 

where v is the local surface velocity of the surface C. Upon integration over V of (3.8), 
use of (3.9) and the divergence theorem, one finds 

1 
2 

(ba - n d Z  = - u uV - a dV+ Jv E. V$ + (b 

(3.10) 

This relation reduces to (3.4) provided that, as will be assumed henceforth, v - n  = u-n 
over L‘. This will be the case for free surfaces, and also for impermeable surfaces such 
as those of bodies immersed in the liquid. Similar generalizations are readily obtained 
for the global forms of (2.8) and (2.9). 

4. Some simple special cases 

theorems can be derived from them. 
As a first application of our results we now show how the virial and the impulse 
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If we take a = x, the location of a Lagrangian particle, we have 

dx 
- = yb, 
dt 

and substitution into (3.4) gives 

-Jsq5x.ndS d = 

dt 

which is the virial theorem proven by Benjamin (1987) and Longuet-Higgins (1989). 
The ‘local’ version of this result can be obtained by choosing, in (2.7), a = x to find 

+- (u*u)(x.n)dS- p’ (x .n )dS .  (4.3) X Is 
Retracing the steps leading from (2.7) to (3.4), the previous form (4.2) is recovered. 
Equation (4.3) generalizes (4.2) to the case in which S does not constitute the entire 
(material) finite boundary of the region occupied by the fluid. 

To recover the impulse theorem, in (2.9) we choose the tensor T to be an arbitrary 
constant unit vector e,. The result is 

Since el is a constant, it  can be eliminated and the result written in vectorial notation 
as 

dt d I  = Js(tu-u-p’)ndS- +(n-V)udS, Js (4.5) 

where 

If the surface S is closed, this quantity represents the Kelvin impulse of the fluid due 
to the motion of 8. In this case, provided S is simply connected, Blake & Cerone 
(1982) have proven the identity 

,. 

This relation holds also if S collectively denotes several closed, simply connected, 
disjoint surfaces. By making use of it, the previous result (4.5) may be written 

d I  
= I, (( n . 24) u - [tu . u - p’] n> ds. (4.8) 

Consider now a situation in which the fluid is bounded by one or more closed finite 
surfaces S (defining, for example, one or more bubbles) and other boundaries B. 
We add and subtract to the right-hand side of (4.8) the integral over B of (n-u) u- 
t (u.u)n.  Since, as is easy to prove, the contribution from the surface a t  infinity 
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vanishes, we can use the divergence theorem to show that the integral over S of this 
quantity exactly cancels that  over B so that we are left with 

I n  the case of a bubble with negligible surface tension effects, p’ is a constant and the 
last integral vanishes. This relation reduces then to the form (1.1) previously quoted. 

Another interesting quantity is the moment of impulse (Wu 1976; Blake 1983) 
defined by 

(4.9) 

By letting, in (2.8), T j , , , k  = ejiklxk, where eUk is the alternating tensor, we readily find 

p’xxndS.  (4.10) d M  

In the special case in which S denotes the complete boundary of the flow, consisting 
of material or impermeable surfaces, application of the divergence theorem shows the 
first two integrals in the right-hand side to vanish identically and one is left with 

- -=-Jsp‘xxn*,  dM 
dt 

(4.11) 

from which the theorem of conservation of angular momentum is readily recovered. 
The virial, the impulse, and the moment of impulse are linear quantities in $. An 

obvious nonlinear quantity of interest is the kinetic energy, which we can study by 
choosing a = V$ in (3.4). Since in this case V - a  = V2# = 0, we have from (3.4) 

It is well known that the integral in the left-hand side is twice the kinetic energy E ,  
of the fluid divided by the density. By use of the momentum equation (3.5), the 
volume integral can be rewritten as the integral of Vp’-V$ = V.(p‘V$), which, by 
the divergence theorem, is seen to equal the last term. The final result is therefore 

--E d --I p‘u-ndS, 

dt K -  s 

which expresses the energy theorem for the fluid under the present hypotheses. 
As a final example, we apply (2.4) to  the case of linear oscillations of a bubble. In  

this case the first two terms in the right-hand side vanish and, using angle brackets 
to denote averages over the bubble surface, we have 

(4.12) 

For linear oscillations S can be taken out of the time derivative. Upon differentiation 
with respect to time we then have 

(4.13) 
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where V denotes the bubble volume and p’ has been taken to be a (possibly complex) 
function of V only, as is legitimate in the linear case. Since, however, 

with dldt-tiw, where w is the oscillation frequency of the bubble, we find 

(4.14) 

This result is well known (Strasberg 1953). For a recent application see Oguz & 
Prosperetti (1989). 

In the next section we apply the previous theorems to a more complicated 
problem. 

5. Application to the oscillation of two bubbles 
As an example of the possible use of the integral theorems derived in $2, and to 

demonstrate their usefulness, we now apply them to a problem for which earlier 
results, such as the impulse or virial theorem, can only furnish partial information. 

We consider two bubbles in an ambient pressure field p ,  oscillating with a 
frequency w .  For analytical convenience we assume that the bubbles remain 
spherical a t  all times with radii R,(t) and R,(t) .  This assumption is a valid 
approximation provided that the distance D(t)  between their centres is sufficiently 
large (Zavtrak 1987). In any event, one may expect the results to have a t  least a 
qualitative value even if this condition is not strictly fulfilled for all times. The 
geometry of the system is depicted in figure 1. 

The configuration of this system is specified uniquely by the instantaneous values 
of the radii and of the positions of the bubbles’ centres. One therefore needs the 
equivalent of eight first-order differential equations to describe the evolution of the 
system. If shape deformations of the bubbles were allowed, this number would be 
greater. The fact that  our theorems can be applied to  the surface of each individual 
bubble separately, and that as many integral relations as are needed can be 
generated by considering in (2.9) the surface integrals of $ ( n - x )  ( n - x )  ... ( n - x )  or 
other expressions, is evidently a very useful feature of those theorems in situations 
such as this one. 

The flip side of the coin is, however, that  it is not clear a priori how to select, among 
the infinite possibilities, the equations to use in a particular case. However, one may 
expect that most equations would contain essentially equivalent information and, 
provided a sufficient set is chosen in any ‘reasonable’ way, the choice of any other 
‘reasonable ’ set would lead to  essentially equivalent results. We shall have further 
comments on the ‘reasonableness’ of the choice later on. For the time being, let us 
just appeal to criteria of simplicity and physical insight. 

One may expect that, in a problem such as the present one, the integral statements 
of the (local) impulse theorem in the direction of the line of centres should contain 
relevant information on the translatory motion of the bubbles. Accordingly, we 
generate two second-order equations by applying, to the surface of each bubble, the 
relations 
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FIGURE 1 .  Geometry for the bubble-interaction problem. 

where z is a unit vector in the positive direction of the z-axis, i.e. the line joining the 
centres of the bubbles. A simple choice for another pair of equations is (2 .4) ,  again 
applied to  the surface of each bubble. Another possibility might be, for example, the 
(local) virial theorem, 

We have found that the two choices lead to indistinguishable results for the evolution 
of the system. In applying the previous integral relations, p‘ will be taken to be 
constant on the surface of the bubbles. This will strictly be correct in the absence of 
surface-tension effects. However, in view of the sphericity assumption, it can also be 
justified when surface tension is retained, as here. 

To proceed further we need an ansatz on the form of the potential. The simplest 
possibility is to assume 

where pl, O1 and p , ,  8, are local spherical coordinates for the individual bubbles. This 
form assumes that the j t h  bubble executes radial pulsations with velocity R,, and 
translates with velocity U, with respect to the flow induced by the other bubble in 
its vicinity. 

Despite the relatively simple form of the potential, the integrals required are 
somewhat complex. For this reason we exploit the assumption that R, -k R ,  + D to  
approximate the potential in the neighbourhood of each bubble by a Taylor series 
truncated to the first order. With this approximation, in the neighbourhood of the 
first bubble, we have q5 x #1 with 

p1 cos 61, 
Rl R;L; U, R: cos 0, R,  Ri U, R: cos 0, 

#I = --- -- 
+ 2 0 2  D3 P1 2P: D 

(5.4) 
and similarly, near the second bubble, # x q52 with 

pz cos 8,. 
R, R; U, R3, cos 0, R, R: Ul R: cos 6, R ,  R U,  R: cos 

2D2 +(F+ D3 
(& = --- --- 

Pz 2P; D 
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It should be noted that these relations are not power series expansions in l /D of an 
exact potential since, for example, the quadrupole terms arising from surface 
deformation have been neglected in (5.3), and such terms would give further 
contributions of order l/D3. Rather, the underlying assumption is that the higher- 
order multipoles contribute little to the interaction between the spheres. Inspection 
of (5.4) and (5.5) shows that q5, and 4, both have the structure 

where p and 19 are local spherical coordinates and, for bubble 1, 

while, for bubble 2, 

2 R2 U,Ri 
A ,  = -22 +- D 2 0 ,  ’ (5.7) 

B, = -Rl Rt, (5.8) 

(5.9) 

(5.11) 

B, = -R, Ri ,  (5.12) 

R,R: U,R: +- 
c2 = 02 0 3  ’ 

(5.13) 

E, = -kUzRi. (5.14) 

It is clear from (5.6) that the translational velocities relative to the absolute frame 
are U+C, so that the relative distance D changes according to the relation 

R,RT U,R! RzRi U,RZ 
U1+--- D =  U 2 + ~ + - - - -  

D2 D3 . D DS (5.15) 

To close the system we need equations for Rl ,R2,  U,, U,, which will be derived in the 
manner previously explained. The impulse equation (5.1) gives, for each bubble, 

(5.16) 

Owing to the assumed uniformity of p’ ,  this quantity drops out from this equation 
as expected. Bassett (1888) treats the case in which the two spheres are fixed so that 
U+ C = 0. Using this relation, it is easy to see that (5.16) coincides with his result in 
Art. 241 up to terms of order D-4 included. As for the terms of order D-5, as a 
consequence of the neglect of quadrupole contributions in the form (5.3) of the 
potential, our expression is only partially correct. 

Again for each bubble, (2.4) gives, after some straightforward but lengthy algebra, 

d 
[4(CR3 + E)] = - BC. 

(5.17) 
4BA 3B2 2E2 4CE 
R3 R4 R8 R3 

d 
dt - [2(AR2 +BR)] +R2 -+--- G2 + -+-+ 2p’ 
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Use of the theorem (5.2) leads instead t o  

153 

4BA 3B2 2E2 4CE 
R3 R4 R6 R3 

+R2 

d 
dt 
- [2(AR3 +BR2)]  +R3 - +- - C2 +- +-+ 2p' 

3R3 

Although for numerical work i t  might be preferable to use AR2+BR and CR3+E 
as auxiliary dependent variables, we give here explicit expressions for the time 
derivatives of these quantities. From the definitions (5.7)-(5.14) we find, for bubble 1 ,  

and, for bubble 2,  

By using these expressions in the left-hand sides of (5.16) and (5.17) a linear system 
of four equations in the four quantities Rl, R,, Ul and U2 is obtained. One may 
conjecture that, if the choice of integral theorems used to obtain the equations is 
'reasonable ', this system can be solved. Presumably this circumstance indicates that  
the information included in the equations is sufficient and not redundant. By the 
same token, if the system turns out to have a singular or nearly-singular matrix, a 
different set of equations should be used. 

Since the process used to  derive the above dynamical equations is somewhat 
formal, it is interesting to examine them in physical terms. A more transparent form 
of (5.16) obtained from the impulse theorem is 

for bubble 1 and 

(5.23) 

(5.24) 
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for bubble 2. These equations are in form which is directly comparable to the 
equation of motion for a body of volume v and mass m immersed in a flow with 
velocity V (see e.g. Landau & Lifshitz 1959, section 1.1 1)  : 

d d V  d -mu, = p u A - - M i k ( U k - V k ) ,  dt dt dt 

where U is the velocity of the body and Mik is the added-mass tensor. Indeed, 
m = 0 for the present case and 

(5.25) 
& R2 U2Ri 

J7 =-2+- 
D2 D3 ’ 

R R2 U,R! 
q=*+- D3 ’ 

(5.26) 

are, for each bubble, the velocity of the flow induced by the other bubble in its 
vicinity. 

The full form of the other equations is somewhat complex and to interpret them 
it is easier to retain only terms in 1/D and to consider the linearized form. In this 
limit, the two sets of equations coincide and reduce to 

(5.27) 

Ri .. 
for bubble 1 and RPRB = p i -ERl  (5.28) 

for bubble 2. These can be recognized as the linearized forms of the Rayleigh-Plesset 
equations adjusted for the pressure field induced by the other bubble at the centre 
of each bubble (Zaholotskaya 1984). 

The fact that  the linearized forms of (5.17) and (5.18) coincide suggests that these 
equations essentially contain the same information and therefore cannot be used 
together. Their selection as a fundamental set of dynamical equations would not be 
‘reasonable ’ in the sense previously explained. An explicit expression for their 
difference in the fully nonlinear case can be found by multiplying (5.17) by R and 
subtracting from (5.18) to find 

-&m(K--PJ C&+ UAl (5.29) 

for bubble 1, and -w:[(K-iuz) (v,+U,)I (5.30) 

for bubble 2. The difference is zero if 

V,=$1j l  or V,=-Ul ,  and V,=+!J2 or V , = - U 2 .  (5.31) 

Interestingly, the first and the third conditions are actually met in the linearized 
approximation in which the impulse equations (5.23), (5.24) become 

for bubble 1 and 

for bubble 2. 



A generalization of the impulse and virial theorems 155 

After explicit expressions for R,, R,, cTl and U, have been obtained by solving the 
linear system involving these quantities mentioned above, any standard technique 
can be used to integrate in time. But before this can be done, a definite model for the 
pressure term p’ must be specified. By definition p’ = (p-p,)/p. For simplicity we 
take the gas in the bubbles to compress adiabatically so that, on the outer surface 
of the j t h  bubble, 

R; 37 2a 8. ’=’;(%) -x- 4p-2, R, j= 1,2. (5.32) 

Here a is the surface tension, p the viscosity, and y the adiabatic index. The 
superscript 0 indicates equilibrium conditions. Since the velocity of the radial motion 
is typically much larger than that of the translatory motion of the bubbles, it  is not 
inconsistent to retain viscous effects in (5.23), although no drag terms appear in the 
momentum equations. For the ambient pressure p ,  we take 

p a  = p5( 1 - 6 sin wt) ,  (5.33) 

where p s  is the static pressure, and 
2a 

P; = Ps+- 
R; 

is the pressure inside each bubble a t  equilibrium. 
In  the numerical calculations we use non-dimensional quantities in which the 

reference length and time are RY and w-l respectively, and the reference pressure is 
~ ( W R ; ) ~ .  In  these dimensionless variables, indicated by an asterisk, we have 

where p z j  = (l-lV.)(l-csint*), y. = - 2a 40P 
ORO’ M.f=F* 

PI I PI 
(5.34) 

We present some numerical results obtained from the previous system of equations 
in the next section. 

6. Numerical examples 
The study of the mutual interaction between two linearly oscillating bubbles has 

a long history that goes back to C. A. Bjerknes in 1868. The linear theory is very well 
understood (Crum 1975; Apfel 1976; Weiser, Apfel & Neppiras 1984; Prosperetti 
1984) and leads to the following expression for the force F2 exerted by bubble 1 on 
bubble 2 in the direction of the line of centres: 

Here is the equilibrium volume of the bubbles, 8, is the amplitude of the volume 
pulsation so that V,(t) = q[l-8,sin(wt+$j)], and $j is the phase of the bubble 
oscillation with respect to the driving sound field. A negative force implies attraction 
and a positive one repulsion. In  the linear regime of oscillation, this equation shows 
that two bubbles both driven below or above resonance will attract, while if one is 
below and the other above resonance, the force will be repulsive. As a simple 
application of the equations derived in the previous section we briefly examine here 
the validity of this statement for the nonlinear case. 

6 FLM 218 
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FIGURE 2. (a) The dimensionless radius versus time for two oscillating bubbles; and (b) the time 
variation of U,  and U,  defined in equation (5.3). The continuous lines are for bubble 1 and the 
dashed lines for bubble 2. ( c )  The position X of the midpoint between the bubbles, and (d) the 
distance D between the centres, both in units ofRi. Here the equilibrium radii are R: = 0.1 mm and 
R: = 0.09 mm. The initial distance is D(0)  = 5 mm, the frequency w of the driving sound field is 
such that w/w! = 0.51, where is the linear resonance frequency of bubble 1. The dimensionless 
sound amplitude is E = 0.1. 

Figures 2 and 3 refer to two slightly different bubbles, having equilibrium radii of 
0.1 and 0.09 mm, initially a t  a distance D(0)  = 5 mm, and driven a t  a frequency 
w = 0.51wt, where w: is the linear resonance frequency of the bigger bubble which, 
according to the well-known formula (Minnaert 1933) 

has the value 4 / 2 x  = 33 kHz, approximately, in a static pressure p ,  of 1 bar. Since 
the ratio w/w: has the value 0.46, both bubbles are driven below resonance and, 
according to linear theory, should therefore attract. This is indeed seen to be the case 
a t  low forcing, 6 = 0.1, in figure 2. In  this and in the following figures panel (a) shows 
R,(t) and R2(t) and panel (b )  shows Ul(t)  and U,(t). In both panels the continuous line 
is for bubble 1 and the dotted line for bubble 2.  Panel (c) shows the position X ( t )  of 
the midpoint of the segment joining the centres, and panel ( d )  is a graph of the 
relative distance D(t ) ,  both non-dimensionalized by R!. The time is given in units of 
wt. It can be seen from the second panel that  the bigger bubble has a strong effect 
on the translation of the smaller bubble so that the centre of the system moves in the 
direction of the bigger bubble. At a higher forcing, c = 0.5, figure 3, the force is 
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figure 2, with 6 = 0.5. 

essentially always repulsive, in marked contrast with the predictions of linear theory. 
This behaviour is, however, strongly dependent on the driving frequency. For 
example, the same two bubbles driven at w/wy = 0.5, w/wi  = 0.4, for E = 0.25, are 
found to attract. Our preliminary computations have revealed several intricate 
features of this system which we shall address in a separate paper. 

The existence of repulsive forces in bubbles driven below resonance has been 
reported earlier by Zabolotskaya (1984) in the linear case. There the effect was due 
to the change in the oscillation frequency of the bubbles caused by their mutual 
interaction as obtained from (5.27) and (5.28). Here, the result is instead a clear 
consequence of nonlinear effects. This finding may have a bearing on some intriguing 
experimental observations reported by Crum & Nordling (1972) on the motion of 
bubble clusters in a high-intensity ultrasonic field. They found that the clusters 
would retain their identity over several hundreds of acoustic periods before being 
annihilated, a result evidently incompatible with the linear theory of Bjerknes forces. 
An explanation of our finding could be that, near the first nonlinear resonance, the 
bubble radius contains a strong component at twice the driving frequency. Owing to 
the slight difference in bubble radii, this component is driven below resonance for the 
smaller bubble and above resonance for the bigger one. These components would 
therefore tend to give rise to a repulsive force. Since, according to (6.1), the 
magnitude of the force is proportional to the square of the frequency, this force could 
be more intense than that due to the fundamental. Of course, as shown by Thompson 
(see e .g .  Bassett 1888), a repulsive force can also arise from the oscillatory 
translational motion of the bubbles. The exact theory shows this effect to be of order 

6-5 
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0-'. Our approximation might lead to an effect of order D-5 due to unbalanced terms 
of this magnitude. I n  either case, the distance between centres in these examples is 
so large that these repulsive forces must be negligible. 

Let us now turn to the case of free oscillations, for which B = 0 in (5.34). In  figure 
4 we consider two equal bubbles with Ro = 0.1 mm, initially at a distance D(0) = 
10Ro = 1 mm from each other. Here the time is units of u! t .  The initial condition for 
bubble 1 is R,(O)/Ry = 1.25, while bubble 2 is in equilibrium. Like any other system 
of nearly tuned coupled oscillators the two bubbles exchange their energy at  a 
modulation frequency lower than their oscillation frequency. The force here is 
weakly repulsive, an indication of the presence of nonlinear effects since the linear 
phase difference for these initial conditions would be +K and the resulting force 0 
according to (6.1). The mean position also executes modulated oscillations with a 
non-zero mean component, another indication of the importance of nonlinear effects. 
For the same situation, when the second bubble is made slightly smaller, R: = 
0.09 mm, figure 5, the force becomes strongly attractive, in qualitative agreement 
with linear theory. 

In  figure 6 the two bubbles have the same radius, 0.1 mm, and are stated with the 
same over-expansion R(0)/Ro = 1.25. By images, this situation can also be related to  
the oscillations of a bubble in the neighbourhood of a rigid wall. The force is strongly 
attractive and, although the theory is probably quantitatively unreliable when the 
bubbles become too close, the results suggest coalescence in about ten cycles. The 
mean position remains fixed a t  0, which gives an indication of the accuracy of the 
numerical procedure. 
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4, but for R: = 0.09 mm. 
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FIGURE 6. As figure 4, but for equal initial conditions R,(O)/R; = R,(O)/Ri = 1.25. The two 
curves in (a )  superpose and are indistinguishable as expected. 
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FIGURE 7. As figure 6, but for initial conditions R,(O)/Ry = 1.25, R,(O)/R: = 0.75. 

In our final example, shown in figure 7, the bubbles have again the same 
equilibrium radius of 0.1 mm, but are started with opposite phases, R,(O)/Ry = 1.25, 
R,(O)/Ri = 0.75. This is close to simulating the oscillations of a bubble near a plane 
pressure release boundary, for which however the initial changes in the volume, 
rather than the radius, should be equal. Here the force is repulsive, as expected. 

7. Summary 
In the first part of the paper we have derived a very general class of theorems 

concerning certain integrals of the velocity potential over flow boundaries. It has 
been shown that the known forms of the impulse and virial theorems are special cases 
of our general result. Unlike those theorems, however, the integrals appearing in our 
result do not need to extend over the entire flow boundary, but are applicable to any 
portion of it. 

The theorems obtained appear to be especially useful for approximate calculations, 
in a manner similar to that of Blake and co-workers who showed how such 
approaches can provide a correct global picture without the costly calculations of an 
exact formulation. Since our class of theorems is in principle infinite, again contrary 
to earlier results, it appears plausible that our formulation enables one to derive as 
many independent equations as there are degrees of freedom in the approximate 
formulation. 

As an example of the application of our results we have studied the mutual 
interaction of two bubbles executing forced and free oscillations. An unexpected 
result of this application has been that nonlinear effects can influence the interaction 



A generalization of the impulse and virial theorems 161 

so strongly as to change the sign of the force with respect to the prediction of the 
linear theory. This finding may explain the observed persistence of stable bubble 
clusters in strong acoustic cavitation. 

The authors wish to thank Dr Pedro Ponte Castaiieda and Dr John Blake for some 
helpful suggestions. This study has been reported by the Ocean Acoustics Program 
of ONR. 

Appendix 
Here we give a simple derivation of (2.6) for the time derivative of the unit normal 

to a material surface. The transport theorem with V . u  = 0 is given by (see e.g. 
Malvern 1969) 

$ J p d B  = JsgndS-Js(n-V)fudS, 

where f is an arbitrary function. The above equation (A 1) can also be written as 

in view of the identity (2.3). By taking the difference of (A 1) and (A 2), and in view 
of the fact that the surface S is arbitrary and can be taken as an arbitrarily small 
portion of the material surface, we conclude that 

dn _ -  - n(n.V)(u.n)-(n.V)u. 
dt 

It must also be possible to prove this result directly from considerations of 
differential geometry. The proof given above, however, is more readily accessible to 
people trained in fluid mechanics. 
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